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Abstract—In the last decade, we witnessed significant techno-
logical advancements that had huge impacts across all different
aspect of everyday life. New technologies present important topics
that need to be overseen from their early beginnings to be able
to capture their break through and prepare organizations for
needed transitions. This research tries to detect weak signals of
emerging technologies based on scientific articles published over
the last decade covering several categories.

To capture emerging technology trends, topics, we propose
a method we refer to as ”Top-Down Hierarchical GMM and
Distribution Trending”, including our clustering algorithm opti-
mized for (very) high-dimensional data. In our method we take
advantage of state-of-the-art transformer-based architectures in
Natural Language Processing (NLP) for capturing the topics
represented in scientific articles. Our “Top-Down Hierarchical
GMM-EM” algorithm detects topic clusters, without the re-
quirement to bring down the dimensionality (which would cause
information loss). The algorithm detects the right number of
clusters and the results include their variance, density and back-
trace to the input articles. In the final step of the method the
course that all clusters take over time is trended.

We believe our method and optimized algorithm can give
valuable insights about when topics emerge and are picked-up
by the larger community. Low-variance clusters that trend to
increase in density (more articles on a narrow topic) can be a
weak signal of an emerging technology; low-variance clusters
that trend to higher variance can signal the spread of technology
to new areas. Combined with other insights like affiliations with
nations, organizations or academics, the method can help reveal
the bigger picture.

Index Terms—Weak Signal, ArXiv, Scientific Articles, Trans-
former Model, BERT, Time-series, Topic Trending, Gaussian
Mixed Model, GMM, Hierarchical Clustering, Natural Language
Processing, NLP, Text Sequence Embedding

I. INTRODUCTION

The importance of tracking emerging and disruptive tech-
nologies for future military activities has long been recog-
nized and is reflected in current NATO and national military
strategies. Their early detection plays an important role in
military environments and is valuable input to help prepare
for (future) battle-fields. For NATO to maintain its scientific
and technological advantage, the NATO Science & Technol-

ogy Organization (STO) and NATO Chief Scientist research
and report on the impact of technological trends. The work
described in this paper feeds into this effort.

The ability to detect future technological changes is crucial
to make the right decisions today. Early detection of new
technologies enables organizations to prepare for opportunities
and threats they present. A study from 2019 by the European
Commission (EC) refers to the topic as “Weak Signals in
Science and Technologies”. [1]

As an alternative approach to – and in support of – cap-
turing weak signals of emerging technologies, we propose a
new method: ”Top-Down Hierarchical GMM and Distribution
Trending”. The proposed method can be used in combination
with metadata and other methods that enrich understanding of
articles, topics and technology fields. In our wider research, we
combined the method with information from Microsoft Aca-
demic Graph Database [2] and another method we introduced
and named “Carbon-dating Articles with Transformer Series”
[3].
Weak signals in scientific articles:

• What indicators can be found in scientific articles of
emerging technology;

• What impact will new technology have on the NATO
alliance;

• What countries, industries and academia are investing in
the technology that can influence the future;

• What topics and technologies should NATO invest in
preparing for a safe future for over 1 billion people?

Top-Down Hierarchical GMM and Distribution Trending:

• What clusters of scientific articles – by what countries,
organizations and academia – are showing increased
attention, with increasing numbers of articles (density
increase);

• If scientific articles are representative for what scientific
topics are relevant/trending, how much influence – driv-
ing the focus of nearby topics (variance increase) – do
these topics have?
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This paper describes a method that can help answering the
questions above.

II. DATASETS

For the purpose of (scientific) articles clustering and trend-
ing the method describes the use of a transformer natural
language model (see III) on scientific articles to extract topic-
representing features, also known as text embeddings. The
method is flexible and can be applied on many text-based
datasets, as long as they comply with a few rules:

• All articles (or other entity) are uniquely identifiable.
• The text sequence(s) for each article are information

dense, so that represented topics in dataset are well
distinguishable (e.g. abstracts).

• All articles to be used for clustering have a known publish
date.

A. ArXiv up-to-date

Our research utilized the ArXiv dataset and metadata of –
on date of extraction – 1.9M+ scholarly papers as offered on
Kaggle. [4]

“For nearly 30 years, ArXiv has served the
public and research communities by providing open
access to scholarly articles, from the vast branches
of physics to the many subdisciplines of computer
science to everything in between, including math,
statistics, electrical engineering, quantitative biol-
ogy, and economics. This rich corpus of informa-
tion offers significant, but sometimes overwhelming
depth. In these times of unique global challenges,
efficient extraction of insights from data is essential.
To help make the arXiv more accessible, we present
a free, open pipeline on Kaggle to the machine-
readable arXiv dataset: a repository of 1.7 million
articles, with relevant features such as article titles,
authors, categories, abstracts, full text PDFs, and
more...”

To prepare the ArXiv data set for our experiment, the
metadata for each article was retrieved, including the unique
identifier, the most recent publish date (latest version) and the
corresponding abstract text.

B. Synthetic data

Our research was technically tested with synthetic data. This
data allowed us to test specific behavior of the method on
different aspects. Characteristics are explained in the sections
where synthetic data is used.

III. PROBABILITY DENSITY FUNCTION

In this section we will take a quick look at the theory behind
the concepts that we apply for this algorithm. We also take the
chance to introduce our notation.

Our model assumes the dataset follows a Gaussian mixed
model, that is, it assumes the dataset can be separated into the
sum of various Gaussian distributions. We are also interested
in applying the algorithm to high dimensional datasets such

as BERT [5] text embeddings of ArXiv paper abstracts [4],
therefore, we showcase the probability density function (PDF)
of Gaussian distributions at high dimensions and the necessary
transformations that we had to perform to this function to
tackle a few problems one is faced with when attempting our
objective, which is, to use the PDF as a basis for the input
of an expectation maximization algorithm we will describe
further ahead.

A. Gaussian Distribution PDF

A random variable x is said to follow a Gaussian (or normal)
distribution, ϕ(µ, σ), with µ as the mean of the distribution
and σ is its standard deviation, when its probability density
function follows the equation bellow [6]

PDF (x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

. (1)

This way, the distribution is completely defined by knowing
the scalars µ and σ.

B. Multivariate Gaussian Distribution PDF

We now move to the high dimensional version of the
Gaussian distribution, often called multivariate Gaussian dis-
tribution [7].

We consider a d-dimensional vector, x⃗, as our random
variable. If we do this, the generalization of equation (1) for
d dimensions takes the shape

PDF (x⃗) =
1

(2π)
d
2 |Σ| 12

exp
[
−1

2
(x⃗− µ⃗)

T
Σ−1(x⃗− µ⃗)

]
, (2)

where the mean of the distribution, µ⃗, is a vector with d
dimensions and the covariance matrix of the distribution, Σ, is
a d× d matrix with |Σ| as its determinant. The distribution is
fully defined and any dimension, d, once we know the vector
µ⃗ and matrix Σ.

IV. DEALING WITH HIGH DIMENSIONALITY

In this section we will talk about the problems that we faced
when working with high dimensional data and how we solved
them.

Once we start trying to evaluate equation (2) for large values
of d we start facing numerical problems. The outputs become
very small and we require very high precision in order to get
meaningful values i.e., values different than 0. This problem
is exacerbated if x⃗ takes values that are far away from µ⃗ where
equation (2) has its global maximum as can be seen for any
of the clusters in Fig. 1 a).

Looking at equation (2) we can see how this problem can
be expected since as the number of dimensions, d, increases,
the values for f(x⃗) start decreasing exponentially.

A. Logarithm of the PDF

To tackle the precision problem we chose to evaluate the
logarithm of the probability density function. This value can
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a) Output slice of equation
(2) for d = 1 and d = 24.
No compression.

b) Output slice of equation
(3) for d = 1 and d = 24.
No compression.

c) Output slice of equation
(4) for d = 1 and d = 24.
No compression.

d) Output slice of equation
(4) for d = 1 and d = 24.
With compression.

e) Converged EM proba-
bility for d=1 and d=24.
With compression.

Fig. 1: All the plots are one dimensional slices of the mentioned outputs for three clusters at µ⃗1 = −2, µ⃗2 = 0 and µ⃗3 = 2.
Fig. 1 a) shows the output of equation (2), Fig. 1 b) shows the output of equation (3), Fig. 1 c) shows the output of equation
(4). The final two plots are obtained after applying the compression shown in equation (6). Fig. 1 d) shows the output of
equation (4) and Fig. 1 e) shows the output of equation (7).

be obtained by simply taking the natural logarithm of equation
(2). Doing this yields

g(x⃗) ≡ ln(PDF (x⃗)) =− 1

2

[
d ln(2π) + ln(|Σ|)+

+ (x⃗− µ⃗)
T
Σ−1 (x⃗− µ⃗)

]
. (3)

By evaluating this equation we are effectively changing
the codomain of the probability density function expressed in
equation (2) by replacing the values that are very close to zero
(and therefore require high numerical precision to evaluate)
with negative, non vanishing values. This makes the numerical
precision problem easier to handle.

Equation (3) also preserves the important behaviour of
decreasing monotonically as x moves away from µ. This is
crucial since we intend to use the computed values on our
EM algorithm.

The evaluation of the probability density function and its
logarithm can be seen in Fig. 1 a) and Fig. 1 b) respectively.
In Fig. 1 a) we can see how the codomain of equation (2) goes
from 0 to PDF (µ⃗). In Fig. 1 b) we see how the codomain of
equation (3) goes from −∞ to ln(PDF (µ⃗)). By evaluating
equation (3) we no longer have to deal with the precision
requirements necessary to calculate the values that are very
close to 0.

B. Relative PDF

In order to deal with the numerical precision problem even
further we take the logarithm of the PDF as expressed in
equation (3) and do the following transformation

f(x⃗) = exp [g(x⃗)−max (g(x⃗)) + C], (4)

with

C = ln

(
1038

d

)
, (5)

where C is a constant added in order to shift f(x⃗) into a
position where it uses all the float32 available range increasing
the range where it can be represented. Besides increasing the
representation range of the outputs, this transformation also
makes a relative normalization of the outputs.

Evaluating equation (4) yields the plot shown in Fig. 1 c).

C. Compression of x⃗

As the numbers of dimensions start to increase, a squeeze
can be seen in the width of the various one dimensional slices
of the Gaussian distribution’s probability density function. The
behaviour can be seen in Fig. 1 a).

This squeeze is carried through the transformations made
to the PDF, as can be seen in Fig. 1 c), and ends up giving
numerical problems.

To solve the issue we can make a dimension dependent
compression of the coordinates x⃗. To discover this change
in coordinates we force the output of equation (2) to be the
same as when d = 1 for all dimensions. Doing this yields the
following change in coordinates

x⃗compressed =
x⃗

d
. (6)

If we look at Fig 1 c) and Fig 1 d) we can see the differences
that such a change creates. At d = 1 there is no change as
expected from equation (6). At d = 24 however, we can see
how the coordinate change shapes f(x⃗) to avoid numerical
problems.

V. THE CLUSTERING ALGORITHM

Lets explain what we mean when we say top-down hier-
archical GMM-EM clustering algorithm. The top-down hier-
archical part means that the algorithm assigns an hierarchy
to its clusters and that it proceeds to find them starting
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from the clusters at the top of the hierarchy. The GMM-
EM part of the name refers to the combination of the EM
(Expectation Maximization) algorithm with a Gaussian Mixed
Model (GMM). In the following sections we will explain these
concepts in more detail.

A. The Gaussian Mixed Model

A Gaussian mixed model assumes that, when dealing with
a random collection of points, these points will follow one of
k multivariate Gaussian distributions, each with a probability
density function like the one shown in equation (2), with their
own mean µ⃗j and with their own covariance matrix Σj , where
j goes from 1 to k.

The mixture of k Gaussian distributions themselves follow
a multinomial distribution, ϕ. The probability of random point
belonging to distribution j is denoted by ϕj .

B. The Expectation Maximization Algorithm

When applied to our problem, the EM Algorithm is an
iterative algorithm with two steps [8], the E-step and the M-
step. The algorithm is meant to be used on a collection of n
points.

First we have the E-step, where we try to estimate the
probability of the ith point with position x⃗i belonging to the
jth distribution

E-Step

wj(x⃗i) :=
fj(x⃗i)ϕj∑k
l=1 fl(x⃗i)ϕl

. (7)

Then we have the M-step, where we use the previous result
to estimate the following parameters of our model

M-Step

ϕj :=
1

n

n∑
i=1

wj(x⃗i),

µ⃗j :=

∑n
i=1 wj(x⃗i) x⃗i∑n
i=1 wj(x⃗i)

,

Σj :=

∑n
i=1 wj(x⃗i)(x⃗i − µ⃗j)

T (x⃗i − µ⃗j)∑n
i=1 wj(x⃗i)

.

The EM algorithm is supposed to be repeated until conver-
gence. The results of the E-step are ”guesses” that the M-step
assumes to be true.

C. The Top-Down Hierarchical Part

The EM Algorithm introduced in the previous section
requires the user to know a priori the value of k, the number
of separable Gaussian distributions contained in our Gaussian
mixed model. This poses a problem when one does not
know this value beforehand. To tackle this problem a top-
down hierarchical approach was taken when deploying our
algorithm.

The algorithm is run recursively. On the first iteration, the
algorithm will use the EM algorithms to find k clusters. A
threshold is then defined on the variance of the found clusters.
If the variance of any found cluster is larger than the defined

threshold, the algorithm will dive on those clusters and find k
sub-clusters from the original ones.

D. The Initialization

To initialize the algorithm we will need to have initial
parameters to run the EM algorithm. The value of k has to be
imputed a priori but, as we discussed in the previous chapter,
that won’t impose a maximum in our number of found clusters.

The rest of the initial parameters can be crudely obtained
by taking random k splits of the dataset and calculating their
means and covariance matrices.

A more efficient way is run the dataset through a k-means
algorithm and use our parameter k as the input for the k-
means. This method proved to be the most efficient.

E. Sampling

In the various tests done to the algorithm, it was apparent
that the EM algorithm would converge faster if we had larger
amounts of data points. We took advantage of this by sampling
our dataset and confirmed that the the EM algorithm benefited
greatly from the sampling. In order to alter the original dataset
as little as possible we did a ”similar document” sampling.
By this we mean that the created points were generated very
close to the original ones. Therefore they can be interpreted
as documents that have the same (or very similar) meaning to
their counterparts.

VI. TESTING THE ALGORITHM

To test the algorithm we showcase its application to two toy
datasets, evaluate the results and conclude on performance.

The toy datasets will consist of n clusters of 768-
dimensional points, Cn, n = 1, 2, 3... with each dimension
following a Gaussian distribution, N (µ, σ), where µ is the
mean of the distribution and σ is its standard deviation.

A. Test A

Dataset A has 4 clusters with 768 dimensions following
normal distributions N (µ, σ):

- C1(Black): 300 points, all dimensions follow N (−3, 0.3)
- C2(Red): 150 points, all dimensions follow N (−2.5, 0.3)
- C3(Blue): 300 points, all dimensions follow N (−2, 0.3)
- C4(Green): 150 points, all dimensions follow N (2, 0.7)

Two dimensions of the dataset can be seen in Fig. 2 a).
Since all dimensions are treated equally, in Fig. 2 a) is a good
representation of the dataset.

When using the algorithm, all the four clusters where
completely separated

B. Test B

Dataset B has 3 clusters with 768 dimensions following
normal distributions N (µ, σ):

- C1(Black): 150 points, all dimensions follow N (0, 1.5)
- C2(Red): 150 points, all dimensions follow N (−0.5, 0.2)
- C3(Blue): 150 points, all dimensions follow N (0.5, 0.2)
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a) Two dimensions of dataset A. b) Two dimensions of dataset B.

Fig. 2: Results obtained after applying the clustering algorithm
to the toy datasets.

Two dimensions of the dataset can be seen in in Fig. 2 b).
Since all dimensions are treated equally, in Fig. 2 b) is a good
representation of the dataset.

When using the algorithm, all the three clusters where
completely separated

VII. DETECTING TRENDS

If the points in our dataset are BERT embeddings of
abstracts from arXiv papers, then the developed algorithm can
be used to detect clusters of similar papers. The properties
from these clusters of papers and the way they interact with
other clusters has important meaning and can be used to
evaluate interactions between research fields and their topics.

If we then do this dynamically, by taking timestamped
snapshots of these embeddings, we can track how these
systems of clusters evolve and behave. This can be specially
useful as a way to quickly and autonomously detect emerging
trends in various research areas.

To achieve this with our algorithm, we ingest a sliding time
window of dataset snapshots. More precisely, we get monthly
ArXiv paper snapshots, ingest 12 months of data and use this
ingestion to obtain the first snapshots of clusters. We then
advance one month in our snapshot window of 12 months and
repeat the process. If we keep doing this we will have the
evolution of these clusters.

A. Linking Clusters

Every time we shift the time window our clusters will be
updated. We can keep track of the evolution of each cluster
by evaluating their similarity across time windows. To do this
evaluation we make use of the Bhattacharyya coefficient, BC.

This coefficient can take values between 0 and 1 and is
closely related to the measurement of the intersection of
probability density functions between two distributions N1 and
N2 [9]. Before computing the Bhattacharyya coefficient we
must first compute the Bhattacharyya distance, DB as such

DB (N1, N2) =
1

8
(µ⃗1 − µ⃗2)

T
Σ−1 (µ⃗1 − µ⃗2)+

+
1

2
ln (|Σ|)− 1

4
ln (|Σ1|)−

1

4
ln (|Σ2|) . (8)

a) Two Gaussian distributions
with µ1 = −0.5, σ1 = 1, µ2 =
0.5, σ2 = 1. DB = 0.883.

b) Two Gaussian distributions
with µ1 = 0, σ1 = 1, µ2 = 0,
σ2 = 7. DB = 0.813.

Fig. 3: The distributions on the right plot have the same mean
but the ones on the left plot are more similar since they have
a higher DB .

We can then compute BC (N1, N2)

BC (N1, N2) = e−DB(N1,N2). (9)

Using this coefficient yields a better measure of similarity
between two Gaussian distributions than just using the differ-
ence between their means as can be seen in Fig 3.

VIII. OBTAINED RESULTS

A. Weak Signal Detection

The clusters obtained from the computer science category
of the ArXiv dataset can be visualized in Fig. 4 where we have
highlighted a cluster in red for further analysis. In this figure
the x-axis is the number of documents contained in a certain
cluster in a certain time window divided by the number of
total documents in that time window. This quantity is referred
to as average cluster frequency (ACF).

The y-axis is the increasing rate of these ACF value for all
periods as a geometric mean (y-axis).

In this study we adopt the approach proposed by Yoon [10]
to detect weak signals and differentiate them from the strong
ones. From this quantitative point of view, the determination
of weak signals follows the rationale that clusters with a low
occurrence frequency but a high increasing rate can be classi-
fied as weak signals and clusters exhibiting a high occurrence
frequency and high increasing rate as strong signals. This said,
the weak signals are placed in the top-left quadrant of the
cluster emergence map. This approach leads us to conclude
that the highlighted cluster on Fig. 4 is very likely to be a
weak signal.

To interpret the topics encoded in the clusters shown in the
emergence map we can show the most relevant keyword in a
frequency based word cloud. We do this for our highlighted
cluster in Fig. 5 a).

If we look at Fig. 5 a) we can see a bag of words
with the most relevant keywords for the topic represented by
our isolated cluster. Having a look at the relevant keywords
associated with this cluster it is noticed that the its associated
topic revolves around an emerging wireless technology. This
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Fig. 4: Cluster emergence map. The red cluster is isolated for
further analysis. The topic this cluster represents can be seen
in the bag of words in Fig. 5 a).

a) Cluster bag of words
for isolated cluster.

b) Comparison of amount of papers pub-
lished on the topic of the isolated cluster.

Fig. 5: On the left we have a bag of words helping us
understand the topic from the highlighted cluster in Fig. 4. On
the right we have a comparative visualization of the amount
of paper published on this topic for each country.

is also closely related with 5G communication systems, where
MIMO (Multiple Input Multiple Output) antenna is one of its
key enabling techniques.

B. Leading Research on Weak Signal

We can also see the amount of papers published in the topic
represented by our highlighted cluster for various countries in
Fig. 5 b).

From Fig. 5 b) we can see that the US and China are leading
the world when it comes to this topic in particular. This result
appears to be valid since researchers from US and China
are focusing their research more and more on 5G wireless
technologies [11].

IX. DISCUSSION

We believe our method of clustering ArXiv articles can
reveal indicators of weak signals in scientific articles. It can
reveal the countries, companies and academia that are leading
in these topics and it can be used to study the evolution of
these weak signals by tracking their corresponding clusters
through time.

As was demonstrated, the algorithm is capable of working
with highly dimensional datasets (d ≥ 768). This ability was a
hard requirement for us to work with BERT embeddings. This
possibility is not available when working with most clustering
algorithms such as LDA or a more traditional implementation
of the GMM algorithm such as the one implemented in sci-kit

learn [12]. These algorithms are bound to face numerical prob-
lems at these regimes and first require a drastic dimensional
reduction of the data (using a PCA algorithm for example)
in order to run. The resulting dimensionally reduced dataset
will only partially include the information contained in the
original high dimensional data thus, reducing the accuracy of
any algorithm used to ingest it.

The algorithm also benefits from its hierarchical structure.
This structure allows us to detect any number of clusters, i.e.,
we don’t need to set a predefined number of clusters before
running the algorithm. This is of great importance for our use
case since we can not know a priori the amount of weak
signals that can emerge.

Our method brings an approach that looks at the written
abstracts instead of added keywords, references and received
citations. It does this to pick up on weak signals that may
translate into the beginning of a technological leap.
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